bonsoon's blog |
| latest | about | random
# Logical calculi and proofs. (unit 9, unit 14) Complete the given proofs. (105, 106, 107) 六、請完成下列演算,作答時需連同題目寫在答案卷上。(20%) (Please complete the following proofs. Notice: you should copy the whole questions on your answer sheet.) (105) (a) $$ \lnot P \to P , (P \lor \lnot Q) \to R \vdash P\land R $$ 答. ![[basic-logic/---attachments/logic-problem-6-2025-11-15-20-49-05.svg]] (b) $$ (\forall x)(Px \lor \lnot Rx), (\exists x)Px \to (\forall x)(\lnot Qx \lor Rx), (\exists x)(Px \lor Rx) \vdash (\forall x)(Qx \to Px) $$ 答. $$ \array{ 1. & (∀x)(Px \lor ¬Rx) & \text{Pr} \\ 2. & (∃x)Px → (∀x)(¬Qx \lor Rx) & \text{Pr} \\ 3. & (∃x)(Px \lor Rx) & \text{Pr} \\ 4. & Pa \lor Ra & \text{3, EI} \\ 5. & Pa \lor ¬Ra & \text{1, UI} \\ 6. & Ra ∨ Pa & \text{4, Comm} \\ 7. & ¬¬Ra ∨ Pa & \text{6, DN} \\ 8. & ¬Ra → Pa & \text{7, Imp} \\ 9. & ¬¬Pa v ¬Ra & \text{5, DN} \\ 10. & ¬Pa → ¬Ra & \text{9, Imp} \\ 11. & ¬Pa → Pa & \text{10, 8, HS} \\ 12. & ¬¬Pa ∨ Pa & \text{11, Imp} \\ 13. & Pa ∨ Pa & \text{12, DN} \\ 14. & Pa & \text{13, Dup} \\ 15. & (∃x)Px & \text{14, EG} \\ 16. & (∀x)(¬Qx ∨ Rx) & \text{2, 15, MP} \\ 17. & ¬Qb ∨ Rb & \text{16, UI} \\ 18. & Qb → Rb & \text{17, Imp} \\ 19. & Pb ∨ ¬Rb & \text{1, UI} \\ 20. & ¬Rb ∨ Pb & \text{19, Comm} \\ 21. & Rb → Pb & \text{20, Imp} \\ 22. & Qb → Pb & \text{18, 21, HS} \\ 23. & (∀x)(Qx → Px) & \text{22, UG} } $$ --- 六、請完成下列演算,作答時需連同題目寫在答案卷上。(30%) (Please complete the following proofs. Notice: you should copy the whole questions on your answer sheet.) (106) (a) $$ A\to C, ((A\land B)\to C)\to D \vdash D $$ 答. ![[basic-logic/---attachments/logic-problem-6-2025-11-15-21-12-40.svg]] (b) $$ K \to \lnot L , M \to L \vdash K \to \lnot M $$ 答. ![[basic-logic/---attachments/logic-problem-6-2025-11-15-21-19-16.svg]] (c) $$ (\forall x)(\exists y)(Py \land Qxy) , (\exists x)\lnot Px \vdash (\exists y)(Py \land (\exists x)(\lnot Px \land Qxy)) $$ 答. $$ \array{ 1. & (\forall x)(\exists y)(Py \land Qxy) & \text{Pr} \\ 2. & (\exists x)\lnot Px & \text{Pr} \\ 3. & \lnot Pa & \text{2, EI} \\ 4. & (\exists y)(Py \land Qay) & \text{1, UI} \\ 5. & Pb \land Qab & \text{4, EI} \\ 6. & Qab & \text{5. Simp} \\ 7. & \lnot Pa \land Qab & \text{3, 6, Conj} \\ 8. & (\exists x) (\lnot Px \land Q xb) & 7, EG \\ 9. & Pb & \text{5, Simp} \\ 10. & Pb \land(\exists x)(\lnot Px \land Qxb) & \text{8, 9 , Conj} \\ 11. & (\exists y)(Py \land (\exists x)(\lnot Px \land Qxy)) & \text{10, EG} } $$ --- 六、請完成下列演算,作答時需連同題目寫在答案卷上。 (20%) Please complete the following calculations, and write the answer sheet together with the diagram. (107) (a) $$ \vdash \lnot (P \leftrightarrow \lnot P) $$ 答. ![[basic-logic/---attachments/logic-problem-6-2025-11-15-21-28-32.svg]] (b) $$\array{ (\forall x )(Lx \to (\exists y)(Ly \land Mxy)), (\exists x)(Lx \land (\forall y)((Ly \land Mxy)\to Nxy )) \\ \vdash (\exists x)(\exists y)((Lx \land Ly)\to Nxy) } $$ 答. $$ \array{ 1. & (\forall x )(Lx \to (\exists y)(Ly \land Mxy)) & \text{Pr} \\ 2. & (\exists x) (Lx \land (\forall y)((Ly\land Mxy)\to Nxy)) & \text{Pr} \\ 3. & La \land (\forall y)((Ly\land May)\to Nay) & \text{2, EG} \\ 4. & La & \text{3, Simp} \\ 5. & La \to (\exists y)(Ly \land May) & \text{1, UI} \\ 6. & (\exists y)(Ly \land May) & \text{4,5, MP} \\ 7. & Lb \land Mab & \text{6, EI} \\ 8. & (\forall y)((Ly \land May )\to Nay) & \text{3, Simp} \\ 9. & (Lb \land Mab) \to Nab & \text{8, UI} \\ 10. & Nab & \text{7,9, MP} \\ 11. & Nab \lor \lnot La & \text{10, Add} \\ 12. & (Nab \lor \lnot La) \lor \lnot Lb & \text{11, Add} \\ 13. & Nab \lor (\lnot La \lor \lnot Lb) & \text{12, Asso} \\ 14. & Nab \lor\lnot(La \land Lb) & \text{13, DeM} \\ 15. & \lnot(La \land Lb) \lor Nab & \text{14, Comm} \\ 16. & La \land Lb \to Nab & \text{15, Imp} \\ 17. & (\exists y)((La \land Ly \to Nay)) & \text{16, EG} \\ 18. & (\exists x)(\exists y)((Lx \land Ly) \to Nxy) & \text{17, EG} } $$ ////